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Abstract

The geomorphological change detection through the comparison of repeated topo-
graphic surveys is a recent approach that benefits greatly from the latest developments
in topographical data acquisition techniques. Among them, airborne LiDAR makes the
monitoring of geomorphological changes a more reliable and accurate approach for
natural hazard and risk management. In this study, two LIDAR-DTMs (2 m resolution)
were acquired just before and after a complex 340 000 m? landslide event (4 November
2010) that generated a debris flow in the channel of the Rotolon catchment (Eastern
Italian Alps). The analysis of these data was used to set up the initial condition for the
application of a dynamic model.

The comparison between the pre- and post-event DTMs allowed to identify erosion
and depositional areas and the volume of the landslide. The knowledge of the phe-
nomenon dynamics was the base of a sound back-analysis of the event with the 3-D
numerical model DAN3D. This particular code was selected for its capability to mod-
ify the rheology and the parameters of the moving mass during run-out, as actually
observed along the path of the 2010 debris flow.

Nowadays some portions of Mt. Rotolon flank are still moving and show signs of
detachment. The same soil parameters used in the back-analysis model could be used
to simulate the run-out for possible future landslides allowing to generate reliable risk
scenarios useful for awareness of civil defense and strategy on emergency plans.

1 Introduction

Recent improvements in topographical data acquisition techniques and software allow
to derive high-resolution Digital Terrain Models (DTMs) and to develop new method-
ologies for analyzing earth surface processes (e.g., McKean and Roering, 2004; Lane
et al., 2004; Lashermes et al., 2007; lwahashi et al., 2012; Cavalli et al., 2013; Tarolli,
2014). Among these techniques, Light Detection And Ranging (LiDAR) is probably the
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most important technological innovation for geomorphic research (Roering et al., 2013)
and, in the last years, its applications in geomorphology and natural hazard fields have
significantly increased (Notebaert et al., 2009; Jaboyedoff et al., 2012; Roering et al.,
2013). In particular, comparison between LiDAR-derived DTMs obtained from succes-
sive surveys gives the possibility to produce DEM of Differences (DoD) maps, which
represent a valuable tool to interpret the evolution of geomorphological processes and
to quantitatively assess morphological changes due to erosion and deposition on rivers
(Lane et al., 2003; Wheaton et al., 2010; Picco et al., 2013;), in case of debris flows
(Scheidl et al., 2008; Theule et al., 2012; Blasone et al., 2014) and landslides (Burns
et al., 2010; DeLong et al., 2012).

Another tool broadly used to investigate the dynamics of geomorphological process
is numerical modelling (Hungr et al., 2005; Rickenmann, 2005). Dynamic run-out mod-
els can forecast the propagation of material after initial failure and delineate the zones
where elements at risk will suffer an impact with a certain level of intensity (Quan Luna
et al., 2011). The results of these models are an appropriate input for vulnerability and
risk assessments (van Westen et al., 2006). An important feature of run-out models is
the possibility to perform forward analyses (Bossi et al., 2013) and forecast changes
in hazards (Crosta et al., 2006). Dynamic computer models have the potential to simu-
late geomorphological processes with an acceptable degree of accuracy. Once this is
achieved, a range of potential hazard scenarios can be analyzed and the results can
be used to inform local authorities and the population in order to respond to these haz-
ards and plan to reduce associated risks (Quan Luna et al., 2014). To model properly
the run-out pattern of the flow material during its downslope movement, detailed to-
pographic information from the sliding track and the source zone is needed. Formerly,
DTMs for landslide investigation were realized through GPS surveys (Marcato et al.,
2006) or derived from contour lines and photogrammetry (Sosio et al., 2008). Nowa-
days, an improvement in the precision of the DTMs can be expected by using laser
scanning techniques, such as LiDAR. This will avoid the problem of the lack of accu-
racy of the DTMs and the stochastic changes in topography during the run-out process
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(van Asch et al., 2007). In this paper we report the use of DoD maps as a base to cali-
brate a 3-D model, using the numerical code DAN3D (McDougall and Hungr, 2004), of
a large debris flow event that occurred on 4 November 2010 in the Eastern ltalian Alps.

2 Study area

The Rotolon catchment is located in north eastern Italy (Veneto Region, Italy) and it
covers an area of 5km? (Fig. 1). The valley stretches along an S-shape from 1930 to
590 m where the touristic village of Recoaro Terme is located. The basin is bordered
by mountains made of sedimentary rocks Triassic in age (from Scitian to Retian) such
as dolomite, limestone, sandstones, marls and gypsum. These lithotypes show evident
signs of weathering and are affected by joints and fractures. Rarely igneous rocks
appear, mainly rhyolite but also breccia and tuff.

Thick alluvial deposits cover the upper part of the basin, some originating from rock
falls detached from the dolomitic and calcareous formation located above, some de-
riving from the alteration of the underneath strata of clayey marls. Steep slopes char-
acterize these deposits, thus predisposing the sediments to mass movement events
(Altieri et al., 1994).

The instability phenomena occurring in the Rotolon catchment are linked with the
presence of a large DGSD (Deep-seated Gravitational Slope Deformation) with a vol-
ume of some million m>. The type of movements in the upper part are various: falls, top-
ples, rotational slides that sometimes evolve in debris-flow along the Rotolon stream.
The vulnerable elements in the catchment are two villages set beside the channel
(namely Turcati and Parlati), two bridges and some road sections along with the city of
Recoaro Terme that is located more downstream (Fig. 1).

Several important debris flow events have been documented in the Rotolon catch-
ment since 1798. In 1985 a large reactivation led to a renewed interest in the phe-
nomenon mainly aimed at the definition of possible mitigation measures. More re-
cently, in 2009, a debris flow threatened the village of Turcati, depositing in the channel
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a volume of 30 000 m* of debris. In the last event occurred in 4 November 2010, a mass
of 340 000 m® detached as a rotational slide from the flanks of mount Carega and par-
tially evolved in a debris flow along the main channel. This event produced a channel
aggradation of about 3 m nearby Turcati and Parlati villages, causing alarm among the
population.

To mitigate the hazard and protect the exposed population an automatic monitoring
network (Frigerio et al., 2014) and an early-warning system (Bossi et al., 2015) have
been implemented. At the same time it was crucial to obtain a reliable model of the
event in order to select the more appropriate material properties to use for defining risk
scenarios and design mitigation measures.

3 Methods
3.1 DoD

Two LiDAR surveys have been conducted in the Rotolon catchment by the Soil De-
fence Department of the Veneto Region. The first was carried out in 21 October 2010
by the Regional Authority just 13 days before the event, and the second with the same
characteristics (i.e. sensors, flight parameters, average point density) was carried out
on 23 November. The average point density for both surveys was about 8 pts m~2 while
the vertical accuracy (Root Mean Square Error — RMSE) of laser data was 0.072 and
0.044 m for the October and November surveys, respectively. The available data con-
sisted in 11 ASCII files already interpolated with a triangulation algorithm and then
resampled with linear interpolation on a 2m x2m grid. The 11 files were then con-
verted in ESRI raster format and merged into a single DTM with particular attention to
the spatial coherence of the two surveys.

A first comparison between the pre- and post-event DTMs was carried out with
the Change Vector Analyses (CVA) tool implemented in the open source GIS
Whitebox 2.0.2 (http://www.uoguelph.ca/~hydrogeo/Whitebox/). The tool calculates the
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magnitude (Fig. 2) and the direction of variation (erosion or deposit) by simply subtract-
ing the two topographic surfaces. The resulting rasters show clearly the pattern of the
event but are also affected by noise mainly related to the vertical and horizontal ac-
curacy of the LiDAR data (Cavalli and Tarolli, 2011) and to the different results of the
filtering process applied to remove LiDAR points belonging to vegetation and buildings
in the two raw datasets. Therefore error propagation was taken into account before
quantitative comparisons of sequential DTMs. Both magnitude and direction of varia-
tion maps were used to draw a boundary of the area affected by the event in order to
focus the DoD analysis where the most evident morphologic variations occurred.

For the DoD analysis, the software GCD 5 (Geomorphic Change Detection, plugin
version for ArcGIS) was used (Wheaton et al., 2010). In the code several methods
to calibrate the DoD calculation are presented. In order to adopt an approach based
on the spatially variable assessment of the error it is necessary to have information
about spatially variable DTM quality that is strictly related to the quality of the survey
data (Wheaton et al., 2010). Since original LiDAR point clouds were not available, the
evaluation of spatial uncertainty in each individual DTM was not possible and a simple
minimum level of detection (,,;,LoD) (Brasinghton et al., 2000; Fuller et al., 2003) ap-
proach, considering a uniform error, was used. Predicted elevation changes that occur
beneath .,,LoD are discarded whereas elevation changes above this limit are treated
as real. Brasington et al. (2003) showed the individual errors in the DEMs can be prop-
agated into the DoD as:

SUpop = \/((Sznew)2 - (‘Szold)2 (1)

where Sup,p is the propagated error in the DoD and 6z,,,, and §z,4 are the individual
errors of the post- and pre-event DTM respectively. For the analysis the error in both
DTMs was set at 0.2m, usual error of airborne LiDAR DTM (Cavalli and Tarolli, 2011)
and considered as uniformly distributed.
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3.2 Numerical method

The 3-D simulation was performed with DAN3D software (Hungr and McDougall, 2009)
which uses an adapted Smoothed Particle Hydrodynamics (SPH) approach. The rock
mass is discretized in numerous particles that flow forced by topography based on
a selected rheology.

A 3-D modelling code was necessary for modelling the Rotolon landslide as the
peculiar course of the river alters the dynamic of the flow, with marked effects of path
curvature in the erosion/deposition pattern. Among 3-D codes, DAN3D was chosen
because it allows to modify the rheology of the landslide along the path. The DTM
on which the process is simulated could be divided in different zones in which the
properties of the flowing mass and of the substrate are assigned. This was crucial
because the dynamic of the Rotolon landslide was complex and it was necessary,
for example, to recreate the fluidification mechanism caused by the inlet of the Agno
di Campogrosso (hereafter called Agno), a secondary stream. In fact the Agno inlet
was considered a separation zone between the upper and lower part of the landslide
track. Moreover, DAN3D allows to consider entrainment of material during the process
and permits to select the maximum erosion depth for each zone of the track. The
mechanism of entrainment follows an empirical approach based on the parameter £
(erosion rate [m'1]) which represents the increase of the volume of the flowing mass
per unit of distance travelled (McDougall and Hungr, 2005).

The modelling of the Rotolon landslide followed a back analysis procedure. The soil
parameters are selected through trial-and-error on the basis of the DoD data analysis.
In DAN3D the input files are a source area file, which represents the initial geometry
of the sliding mass, and the topography file. The availability of pre and post-DTM files
allowed to greatly reduce the uncertainties connected with these data as the source file
was clearly highlighted in the DoD map and the pre-event DTM was an almost no-error
topography file. However in order to reduce the computational time of the simulation
the cell were resampled in a 5m x 5m grid.
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4 Results
4.1 DoD analysis

The resulting differential DTM (Fig. 3) was analyzed in order to identify erosion and
depositional areas related to the event and to quantify them in terms of volume. Main
results are listed in Table 1.

Results show a sort of balance between deposition and erosion within the catchment
with a total erosion of 400 000 m®. The 2010 event detached a mass of 340 000 m® from
the main source area in the upper part of the catchment. This mass partially evolved in
a debris flow that stretched for 4.5 km threatening some villages. The total net volume
difference of 15000m® can be considered as bed load transport at the catchment
outlet.

4.2 The event, as described by the DoD

The dynamic of the 2010 event was quite complex due to the morphology of the valley,
the type of sediment involved and the amount of detached material (about 340 000 m3).

Just after the detachment, part of the material (20 000 m2) stopped against the upper
left flank, filling a small depression and not contributing to the flow along the Rotolon
stream. The other 320000 m?® fell down in a track characterized by a 27° slope, thus
acquiring further energy. Moreover, the presence of a bend along the channel caused
erosion on the external part of the river bed due to the effect of transversal velocities.
This caused two small lateral failure on the left bank. Later on, in a 900 m long and 15°
inclined track located upstream Agno di inlet, 186 000 m® of material settled. Since here
the total erosion was 21000 m°, leaving 155 000 m? of sediment entering the flatter part
of the valley.

The DoD analysis shows that from the Agno inlet the material flowed for another
3km in a 7° inclined channel depositing 149 000 m? of material. This suggests that
there was a modification of the rheology of the flowing mass due to the increasing
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of water content. Data show that the large Giorgetti check dam (Fig. 1), located just
upstream of the city of Recoaro Terme, represents the last section along the Rotolon
stream in which a significant deposition occurred.

4.3 Modelling

The coupling of frictional and turbulent behavior allows to describe better the complex
dynamic of the landslide, its long travel distance coupled with more than 10 % of en-
trainment. Therefore during the calibration process a Voellmy rheology (Voellmy, 1955)
was selected for the model:

2
T, = — <faz + pg:tvx> )

where f is the friction coefficient (f =tan¢g, with ¢, bulk basal friction angle) and
¢ the turbulence parameter. For the upper part a friction coefficient of f =0.18 and
a turbulence parameter of ¢ =200m s~ have been selected whereas f = 0.05 and é=
200 ms ™2 were used for the lower part. These are typical parameters for the modeling
of a debris flow in alpine environment (Quan Luna et al., 2013). Moreover an erosion
rate of 0.0001 has been imposed, with a maximum erosion depth of 5m in the upper
part of the track.

As the kinematics of the phenomenon in the detachment area was complex, with the
left bank movement difficult to simulate with the same code, our model focused on re-
constructing the dynamic and deposition pattern along the channel track and the results
show a good correspondence with the DoD data (Fig. 5). Actually the volume deposited
in the upper section was 196 000 m? while in the lower tract was 152000 m®. The er-
rors are therefore 10000 m® upstream the Agno di inlet and just 3000 m> downstream,
that is an acceptable accuracy for the modelling of a large landslide. Nevertheless the
deposition pattern is not perfectly reconstructed; the biggest discrepancy is located just
after the Agno inlet. In the real event the fluidification process took some space and
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time to develop with a marked transversal dynamic of deposition in the external part
of the curve and erosion in the intern, where the clear water would have likely flown.
In the model, on the contrary, the modification of the rheology is immediate and this
kind of phenomenon is not recreated properly. Therefore in the map of the deposits
derived from the DAN3D simulation the levee of the deposit after the Agno inlet is not
present. Another smaller difference is located in the channel upstream the Agno inlet:
even though the deposition is coherent with the DoD for thickness and shape of the
deposit, a smearing effect at the border is present with a 20 m buffer outside the DoD
deposit contour. Eventually, the material did not reach the Giorgetti dam. This discrep-
ancy may be explained by the time lag (19 days) between the actual event and the
post-event LiDAR survey: it is presumable that some sediment transport occurred after
the event and that the deposition front advanced along the channel.

5 Discussion and conclusions

In 2013 Worni et al. stated that the future challenges in numerical modelling of flows
are linked to the capability of understanding precisely the dynamic of the phenomena
and to the availability of high-resolution DTMs. In this paper we present the use of
multitemporal LIiDAR DTMs as a tool to analyze mass movement events in each zone
of its track in terms of erosion and deposition obtaining a clear description of the whole
process.

The availability of pre- and post-event DTMs allowed to enhance the consistency
of the numerical model reconstructing the event of 4 November 2010 in the Rotolon
catchment. In Table 2 the main results of the simulation are presented: in the track
zone the erosion values are almost equal and the 13000 m? discrepancy in deposited
volume is less than 4 % the total volume of the event.

The DoD approach could thus be used to improve the reliability of back-analysis-
based numerical model as the reconstruction of the phenomena usually depends on
the definition of a distinct source area, a highly defined pre-event topographic file and
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a spatial distributed source of information about the erosion/deposition pattern. How-
ever the use of DoD for the analysis of fast moving does not provide the velocities data
which are usually obtained through a monitoring system (Arattano and Marchi, 2005).
The lack of velocity data is highly compensated by the information provided by the DoD,
nevertheless for future, similar studies is advisable to consider also the set up of some
geotechnical instrumentation.

The availability of a pre-event LiDAR survey acquired 13 days before the reactivation
was a lucky coincidence and represents the best possible condition. It was possible
to simulate the flow over a topographical surface that was not altered by sediment
transport processes occurring naturally in the catchment, smaller landslides or human
interference. In usual practice though, while requesting a post-event LiDAR survey is
relatively easy, the possibility to obtain a pre-event DTM depends on the capability to
sustain the economical effort of periodic flights, although their cost has dramatically de-
crease (Reutebuch et al., 2005). Thus a rational approach could be to investigate the
whole territory as measure zero and then concentrate flights for postevent assessment
or in periodic surveys on event prone areas, where a consistent model is necessary to
design countermeasure work. The capability to provide a good description of the phe-
nomenon and a reliable numerical model, both describing consistently the whole event
from source area to deposition lobes, will also help in evaluating the best options for
structural mitigation measures at basin scale. In this perspective the integration of DoD
analysis with numerical modelling represents a valuable tool for hazard assessment
and risk mitigation.
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